HCL Activator Plus
HCL Activator Plus
Formula Purposes & Benefits |
HCL Activator Plus is developed based on cutting-edge scientific research and expert formulation to support digestion of essential nutrients, optimal stomach pH, and balanced stomach acid levels in aging adults. Designed to assist the breakdown and absorption of food and reduce the age associated decline of stomach acid and digestive enzymes. Designed to work synergistically with Betaine HCL Plus, our HCL activator forms the ultimate support system for optimal digestion. HCL Activator Plus utilizes pepsin, an acid-tolerant enzyme that thrives in the acidic stomach environment,this powerful combination maximizes protein breakdown and supports overall digestion. For enhanced digestive support, consider Rocktomic’s HCL Support Program, which combines Betaine HCL Plus and HCL Activator Plus.. Trust in this effective combination to promote optimal digestion and overall well-being Our formula is NON-GMO verified and is proudly made in the USA in an FDA registered facility, following Good Manufacturing Practices (GMP) standards. Our commitment to excellence is reflected in the fact that only 4% of the supplements on the market can match our world-class standards. |
Formula Ingredient Deck |
Benefits Of Each Ingredient |
Betaine HCL |
● May support healthy digestion, protein metabolism, and balanced stomach acid levels in aging adults (370). ● May support reduced prevalence of obesity via improved gut microbiome activity (371). |
Organic Turmeric |
● May support antioxidant, cardio-protective, anti-inflammatory, anti-microbial, nephro-protective, hepato-protective, immunomodulatory, and anti-rheumatic effects (123). ● May reduce inflammation via decreases of inflammatory markers such as c-reactive protein, interleukin 6, tumor necrosis factor, and decreased cytokine production (123). ● May support joint health via decreases in connective tissue inflammation and improved pain in individuals with osteoarthritis (122). ● May support blood sugar regulation via increased pancreatic beta cell function and improved insulin sensitivity (121). ● May support cardiovascular and liver health via reduced accumulation of advanced glycation end products (AGE), reduced lipid peroxidation, and improved vascular function. ● Curcumin may exhibit an antioxidant activity via scavenging of superoxide anion (∙O2−∙) and hydroxyl radicals (∙OH) (scavenging of inflammation molecules) (118,119). ● Curcumin may modulate breast carcinogenesis through its effect on cell cycle and proliferation, apoptosis, senescence, cancer spread and angiogenesis (119). ● May target cancer growth pathways such as the NFkB, PI3K/Akt/mTOR, MAPK and JAK/STAT, and may suppress tumor growth (119). |
Organic Tomato |
● May support prostate health, cardiovascular support, antioxidant, anti-inflammatory, and chemoprotective properties against cancer (191,192, 193). ● May support healthy immune response via scavenging of free radicals and reduced oxidative damage of DNA. (191,192,193). ● May support immune health via carcinogen-metabolizing enzymes, apoptosis (cancer cell death), anti-proliferation, pro-differentiation, and anti-lipid peroxidation activities. (193). ● May support immune health via reduced phosphorylation of anti-oncogenes such as p53 and Rb. It also inhibits G0/G1 and S-phase of the cell cycle (193). |
Pepsin |
● May support healthy digestion of nutrients and improved levels of stomach acid (372). |
Proper Use of This Supplement |
|
Our Formula Vs Other Formulas on the Market.
|
|
1. Uses NON-GMO Verified ingredients , GMP certified, and made in an FDA registered facility. |
1. Source cheap ingredients from heavily polluted soils. |
2. High quality betaine HCL and superfoods in a bioavailable and efficaciously dosed formula. |
2. Uses cheap sources of betaine and superfoods that may have heavy metals due to poor product quality. |
Sources:
- Chilelli, N. C., Ragazzi, E., Valentini, R., Cosma, C., Ferraresso, S., Lapolla, A., & Sartore, G. (2016). Curcumin and Boswellia serrata Modulate the Glyco-Oxidative Status and Lipo-Oxidation in Master Athletes. Nutrients, 8(11), 745. https://doi.org/10.3390/nu8110745
- Barzegar, A., & Moosavi-Movahedi, A. A. (2011). Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PloS one, 6(10), e26012. https://doi.org/10.1371/journal.pone.0026012
- Banik, U., Parasuraman, S., Adhikary, A. K., & Othman, N. H. (2017). Curcumin: the spicy modulator of breast carcinogenesis. Journal of experimental & clinical cancer research : CR, 36(1), 98. https://doi.org/10.1186/s13046-017-0566-5
- Suhett, L. G., de Miranda Monteiro Santos, R., Silveira, B., Leal, A., de Brito, A., de Novaes, J. F., & Lucia, C. (2021). Effects of curcumin supplementation on sport and physical exercise: a systematic review. Critical reviews in food science and nutrition, 61(6), 946–958. https://doi.org/10.1080/10408398.2020.1749025
- Pivari, F., Mingione, A., Brasacchio, C., & Soldati, L. (2019). Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients, 11(8), 1837. https://doi.org/10.3390/nu11081837
- Ashtary-Larky, D., Rezaei Kelishadi, M., Bagheri, R., Moosavian, S. P., Wong, A., Davoodi, S. H., Khalili, P., Dutheil, F., Suzuki, K., & Asbaghi, O. (2021). The Effects of Nano-Curcumin Supplementation on Risk Factors for Cardiovascular Disease: A GRADE-Assessed Systematic Review and Meta-Analysis of Clinical Trials. Antioxidants (Basel, Switzerland), 10(7), 1015. https://doi.org/10.3390/antiox10071015
- Mata, I., Mata, S., Menezes, R., Faccioli, L. S., Bandeira, K. K., & Bosco, S. (2020). Benefits of turmeric supplementation for skin health in chronic diseases: a systematic review. Critical reviews in food science and nutrition, 1–15. Advance online publication. https://doi.org/10.1080/10408398.2020.1798353
- Chen, P., Zhang, W., Wang, X., Zhao, K., Negi, D. S., Zhuo, L., Qi, M., Wang, X., & Zhang, X. (2015). Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine, 94(33), e1260. https://doi.org/10.1097/MD.0000000000001260
- Beynon, R. A., Richmond, R. C., Santos Ferreira, D. L., Ness, A. R., May, M., Smith, G. D., Vincent, E. E., Adams, C., Ala-Korpela, M., Würtz, P., Soidinsalo, S., Metcalfe, C., Donovan, J. L., Lane, A. J., Martin, R. M., ProtecT Study Group, & PRACTICAL consortium (2019). Investigating the effects of lycopene and green tea on the metabolome of men at risk of prostate cancer: The ProDiet randomised controlled trial. International journal of cancer, 144(8), 1918–1928. https://doi.org/10.1002/ijc.31929
- Shanbhag V. K. (2016). Lycopene in cancer therapy. Journal of pharmacy & bioallied sciences, 8(2), 170–171. https://doi.org/10.4103/0975-7406.171740
- Du, J., Zhang, P., Luo, J., Shen, L., Zhang, S., Gu, H., He, J., Wang, L., Zhao, X., Gan, M., Yang, L., Niu, L., Zhao, Y., Tang, Q., Tang, G., Jiang, D., Jiang, Y., Li, M., Jiang, A., Jin, L., … Zhu, L. (2021). Dietary betaine prevents obesity through gut microbiota-drived microRNA-378a family. Gut microbes, 13(1), 1–19. https://doi.org/10.1080/19490976.2020.1862612
- Guilliams, T. G., & Drake, L. E. (2020). Meal-Time Supplementation with Betaine HCl for Functional Hypochlorhydria: What is the Evidence?. Integrative medicine (Encinitas, Calif.), 19(1), 32–36.
- Feldman, M., Cryer, B., McArthur, K. E., Huet, B. A., & Lee, E. (1996). Effects of aging and gastritis on gastric acid and pepsin secretion in humans: a prospective study. Gastroenterology, 110(4), 1043–1052. https://doi.org/10.1053/gast.1996.v110.pm8612992